Scaling participatory approaches in index insurance

Special thanks to ACToday, CCAFS, CIF, NASA, NOAA NERC DRiSL SatwinAlert, Syngenta Foundation, WFP R4, and World Bank projects for examples

Presented by

Daniel Osgood, Lead Scientist

Financial Instruments Sector Team

deo@iri.columbia.edu 1

THE APPLICATION: INDEX INSURANCE

- Climate change: more bad years
- Adaptation: increase productivity in normal years to cover bad year loss
- Insurance must be built, evaluated in terms of the problem it is intended to solve
- Insurance is only one part of the solution, must be engineered to be compatible with other tools
- Really hard to know what coverage to reduce that is covered by other risk management for affordability

But strategies that increase productivity in most years face increased risk in bad years

Threat of 1 drought year out of 5 prevents other 4 from being much more productive

Key to adaptation is to relax risk of bad year to unlock productivity options

Insurance: help reduce risk to unlock productivity as part of package.

Designing insurance to meet this need is challenging

WIDE RANGE OF APPLICATIONS, ONE THING IN COMMON: ALL INFO "NOT PERFECT"

01 Remote sensing data often used because there are few other data sources, raingauges sparse, error prone

Paucity of validation/calibration data, incorrect estimates, lack of knowledge of extent of errors

03

Models may miss key local features

Phenology (crop timing) may be assumed incorrectly by couple of weeks

- Eg due to elevation, temperature, availability of inputs, labor.
- Couple of weeks off can lead to very different water stress results, missing major events

04

Yield data sparse, short, inaccurate

02

Sometimes farmer recollection only

source of historical information Production datasets may not relate to farmer experiences

- Problem may be costs to maintain production, not production level
- May be cost of failing to repay loan, low production or shifting to food crops without loan better vs medium production of cash crop inadequate to cover costs

05 Co-Production essential

Data validation must be 2 way: farmers must understand quality of remote sensing data used so that they know how well risks addressed, and what gaps they are exposed to Terabytes of climate/weather big data in index insurance

Many FREE sensors/products

- Rainfall Estimates: CHIPRS, TAMSAT, ARC2, ENACTS...
- Vegetation: EVI, NDVI, NDWI ...
- Soil Moisture (Passive Microwave, Active Microwave, Water Budget)
- Evapotransporative Stress, Flood, High resolution imagery
- BMD Data Library, ENACTS (gridded merged satellite/raingauge – thx ACToday)

What does this have to do with farmers?

Multiple layers of crowdsourced information

- Use existing field technologies as much as possible transform to crowdcore of design
- Strategically layer by cost using less accurate, lower cost mechanisms to compliment more intensive sampling
- Expert surveys
- Picture Based Monitoring Apps, Agonomist supervised (IFPRI led)
- Moderated community design structured meetings, tablet/smartphone 2 way links to database
- Individual reporting: Smartphone, SMS, Robo Calls, Games, Contests
- What does this have to do with satellites/models?

A PATH FORWARD: FOCUS ON FOREST BEFORE TREES

Compounding evidence design strategy on critical events

- Parametric financing: for worst events
- In bad year, farmer wants meaningful payout
- Focus on techniques that robustly hit worst years
- We must understand statistically, scientifically, and intuitively
- Compounding evidence design strategy
- Crowd at the core of science based design
- But don't be too optimistic, this is a climate and development audience, we need to be disappointed about something

Payouts	in 2	out of	3١	<i>lears</i>
---------	------	--------	----	--------------

	Loss	Pay
1	1	1
2	0	0
3	0	0
4	0	0
5	0	0
6	1	1
7	0	0
8	0	0
9	0	0
10	0	0
11	0	0
12	0	0
13	0	0
14	0	0
15	1	0
	Correlation:	0.784465

Easy to get wrong, important to get right: Accidental overfitting by human or machine Correlation may be high simply because identified single most obvious thing

Danger even with quality datasets and advanced modeling

Insurance will not work unless designed/evaluated for its purpose for client

Payout in wo	rst place=very	high correlation				
	But is it good					
	lel?					
	nly echo the obvio	ous?				
Year or						
Location	Loss	Pay	Pay			
1	0.20	0	C			
2	0	0	0.01			
3	0	0	0.01			
4	0	0	0.01			
5	0	0	0.01			
6	1.00	0.30	0.30			
7	0	0	0.01			
8	0	0	0.01			
9	0	0	0.01			
10	0	0	0.01			
11	0	0	0.01			
12	0	0	0.01			
13	0	0	0.01			
14	0	0	0.01			
15	0.10	0	C			
	Correlation:	0.98	0.97			
		Only worst pay	Wrong pay everywhere			

Crowd at core? Research (thx NASA, NOAA, NERC, ACToday...)

- Is there evidence of information in farmer recollection?
- Are there systematic biases?
- What strategies might address these biases?
- Do we get complimentary perspectives across gender, networks?
- Are there different psychological recollection strategies across gender?
- Do individuals report different information than groups (groups may be cleaner information, but important voices may be missing)
- What strategies might work with robo-calls, is there any useful information?
- Can AI, CI, and satellite information be used to clean farmer recollection?
- Do incentives based on reporting quality improve information?
- Do Non-financial incentives in games, certificates improve reported information quality?

The Goal: Embed Crowd at the core of locally driven science based processes

Embed Crowd at core of Annual Index Process: SELF OPTIMIZING INDEXES

Roles-determined through participatory processes

- Eg. Partner R4/ACToday roles workshops
- Gov roles don't need to focus on subsidies:
 - Expertise, leading activities, convening, regulating, data, hosting platforms (eg ENACTS), field staff, field monitoring....
 - Subsidies only to where most valuable (data, education, infrastructure)
 - Having strong, valued, understood, cogenerated products is more effective than direct premium subsidies

VILLAGE REPORTING and technology

oBoToolb	OX	
	Ethiopia Initial Visit (updated 2019)	
Name o	if User	
Nicola	S	
Name o	of the Organization	
IRI		
Positior	n of User within Organization	
Res		
Email A	ddress	
Enter th	ne current year for which you are submitting data	
2019		
Coordin	nates	

Information is gathered through the interactive exercise games designed specifically to identify the worst years in farmer memory.

These exercises were normally collected on paper or computer. This process is now testing the uses ODK forms to collect data on tablets or smartphones.

This way, we can get real time data while our partners are in the field. As well as find ways to scale our work from hundreds of villages to thousands and millions.

CROWDCORE INFO

There is a lot of information and data available when conducting index insurance design. These tools are for the design and help what affordable mean

Seasonal Calendar by Woreda (Teff) in Tigray Region

Farmer Bad Years Heat Map

The heat maps are a visual representation of the farmer reported bad years

Seasonal Calendar

The Seasonal calendar is mainly obtained from the initial visits, and the information of the seasonal calendar is showcased in a visual representation

Raingauge Data

A very important piece of information that helps validate the index designed. This rain gauge data collection is in process

Is there evidence from satellites, IPC, Models, etc. to validate crowdsourced years?

	Season			Early								Late									
Year	Raya Mehr+ Belg Disaster Risk Profile	Yield	WRSI	Rainfall Estimates		Vegetation Estimates	Soil Moisture	Evapotransporative	Yield	WRSI	Rainfall Estimates				Vegetatio Estimate	n Soil s Moisture	Evapo	vtransporative			
Roman-Ethiopian	DPPC.gov.ET	A B	Maize	ENACTS ARC	CHIRPS	CHIRP T	AMSAT	EVI AVHRR	g VUT	Hain HainModis	Teff	Teff	ENACTS	ARC	CHIRPS	CHIRP	TAMSAT I	VI AVH	RRg VUT	Hain I	HainModis
1983-1976			0.11	0.41 0.4	0.51	1	0.24	0.7	9	0.29		0.17	0.35	0.1	0.24	0.05	0.16		0.54	0.1	
1984-1977			0.14	0.24 0	0.7	0.32	0.03	0.7	1	0.42		0.03	0.03	0	0.08	0.38	0.11	3	0.71	0.23	
1985-1978			0.22	0.43 0.6	0.76	0.43	0.35	0.1	7	0.55		0.11	0.49	0.4	0.24	0.68	0.27		0.33	0.58	
1986-1979			0.67	0.51 0.2	0.73	0.3	0.43	0.3	8	0.13		0.56	5 1	0.3	0.24	0.73	1		0.12	0.45	
1987-1980			0.06	0.11 0.1	0.11	0.19	0.16	0.0	8	0.45		0.22	0.3	0.2	0.27	0.16	0.05	3	0.21	0.03	
1988-1981			0.81	1 0.9	0.59	1	1	0.9	2	0.16		0.75	0.54	0.5	0.38	0.32	0.51	3	0.04	0.35	
1989-1982			0.39	1 0.3	0.16	0.43	1	0.4	6	0.68		0.14	0.3	0.3	0.16	0.62	0.22		0.5	0.48	
1990-1983			0.08	0.41 0.7	0.43	1	0.41	0.2	5	0.65		0.08	0.11	0.1	0.03	0.11	0.14		0.08	0.32	
1991-1984			0.61	1 0.8	0.78	1	1	0.3	3	0.32		0.47	0.05	0.1	0.05	0.03	0.03	i i i	0.25	0.19	
1992-1985			0.69	0.16 0.2	0.43	0.08	0.05	0.2	1	0.19		0.92	0.59	1	0.35	0.24	0.24		0.75	0.26	
1993-1986			0.31	0.24 0.7	0.43	1	0.14	0.04	4	0.58		0.56	0.14	0.6	0.41	0.51	0.59		0.17	0.06	
1994-1987			0.47	1 0.4	0.68	1	1	0.5	8	0.1		0.75	0.62	0.5	1	0.27	0.41		0.67	0.61	
1995-1988			0.42	0.32 0.3	0.14	0.3	0.41	0.9	6	0.71		0.67	/ 1	0.6	1	0.43	0.46		0.42	0.74	
1996-1989			0.89	0.46 0.4	0.43	0.43	0.54	0.8	3	0.06		3	0.3	1	0.59	1	1		0.58	0.55	
1997-1990			0.25	1 0.8	0.43	0.43	0.49	0.1	2	1		0.3	0.08	0.2	0.11	0.08	0.19		0.29	0.16	
1998-1991			1	1 1	1	1	1	0.8	8	0.23		0.83	8 1	0.8	1	1	1		0.79	0.97	
1999-1992			0.97	1 0.9	1	1	1	0.	5	0.26		0.42	2 1	1	1	1	1		0.88	1	
2000-1993			0.5	1 0.3	0.19	1	1	0.7 0.6	7	0.87 0.2		0.5	0.41	0.5	0.43	0.41	0.43	1	1	0.29	0.27
2001-1994			0.61	0.16 0.6	0.43	1	0.14	0.8	1	0.74 0.27		0.31	1	0.6	0.51	0.54	0.49	0.89	0.83	0.84	0.2
2002-1995			0.28	0.05 0.2	0.03	1	0.08	0.3 0.2	9	0.81 0.13		0.44	0.65	0.7	1	1	1	0.32	0.46	0.39	0.07
2003-1996	1		0.56	1 0.5	1	1	0.32	0.6 0.7	5	0.84 1	0.3	3 0.67	0.19	0.3	0.3	0.3	0.38	0.58	0.92	0.68	0.47
2004-1997			0.03	0.24 0.1	0.46	1	0.19	0.4 0.5	4	0.94 0.6	0.1	7 0.06	0.35	0.2	0.32	0.22	0.08	0.11	0.38	0.71	0.13
2005-1998	1	0.57	0.22	0.57 0.6	0.49	1	1	0.3 0.6	2	0.97 0.4	0.	5 0.42	0.22	0.7	1	1	1	0.26	0.62	0.9	0.67
2006-1999	1		0.86	1 0.8	0.43	0.3	0.22	0.5 0.4	2	0.35 0.8	0.7	5 0.86	5 1	0.4	1	1	1	0.63	0.96	0.42	0.8
2007-2000			0.83	1 1	1	1	1	1	0.82	0.48 0.93		0.69) 1	0.7	1	0.7	1	0.37	0.3	6 0.81	1
2008-2001	1	0.29	0.75	0.11 0.5	0.54	1	0.46	0.1	0.09	0.9 0.87	0.2	5 0.58	3 1	0.4	1	1	1	0.21	0.1	8 0.94	0.87
2009-2002	1	0.14	0.44	1 0.5	1	1	1	0.4	0.2	0.77 0.33	0.4	2 0.19	0.19	0.2	0.14	0.19	0.35	0.47	0.2	7 0.13	0.53
2010-2003		0.71	0.67	0.3 0.8	0.43	1	1	1	1	0.39 0.67	0.9	2 0.89	0.49	1	0.57	0.78	1	0.74	0.7	3 0.52	0.93
2011-2004		0.43 0.	8 0.6	0.4 0.2	0.43	1	1	0.8	0.30	0.52 0.47		1 0.31	0.57	0.5	1	0.46	0.54	0.68	0.4	5 0.87	0.6
2012-2005		0.86 0.	6 0.22	0.57 0.7	1	1	1	0.7	0.64	0.61 0.73	0.5	8 0.42	2 1	0.1	0.49	0.14	0.32	0.05	0.0	9 0.77	0.4
2013-2006		1.00 0.	2 0.75	0.3 0.9	0.62	0.11	1	0.2	0.73	0.03 0.53	0.6	7 0.81	. 1	0.7	1	0.76	1	0.42	0.9	1 0.65	0.73
2014-2007		0.	8 0.81	0.35 0.2	0.05	0.05	0.27	0.2	0.55	0.07	0.83	3 0.97	0.38	1	1	0.59	1	0.79		1	0.33
2015-2008			1 0.33	0.03 0.1	0.08	0.03	0.3	0.1	0.18	3	0.0	B 0.42	0.43	1	0.54	0.57	1	0.16	0.5	5	
2016-2009			0.53	1 1	0.84	0.22	1	0.9	0.93	L		0.78	3 1	0.4	1	0.65	0.57	0.53	0.6	4	
2017-2010			0.97	1 0.5	0.57	0.16	0.51	0.5	0.4	5		0.97	/ 1	1	0.46	0.49	0.62	0.95	0.8	2	
2018-2011			0.92	1 0.1	0.65	1	1	0.6				0.67	/ 1	1	1	1	1	0.84			
2019-2012				0.49 0.4	0.81	0.16	1						0.51	1	1	0.35	0.3				

BASIS RISK MINIMIZATION TOOLS

Parameter Optimization - Validation

Thx Syngenta Foundation Bangladesh Insurance Program

Crowdsourcing at core of Satellite Design Machine

Comparing different Station, Satellite, model, and yield/vulnerability data for different locations

... to check how the important parameters relate to farmer "bad years" collected from the field.

Optimizing most impactful parameters (eg seasonal timing) intuititively, and with advanced metrics

MAPPING AND SAMPLING VILLAGES FOR SCALE

How dense should crowdsourcing be?

For crowdsourcing intercomparision study of national level programs, need to determine how dense sampling should be to effectively inform parametric products

Target data gathering at lowest cost strategy

Set insurance regions, types at appropriate scales

INTER-COMPARISON ACROSS SCALES

Continent level crowdsourcing

Can disaster events reporting be used to drive remote sensing applications? A Latin America Weather Index Insurance Case Study. (Brahm, 2019)

Combine, farmer crowdsourcing, disaster databases, satellite estimates for drought, excess, flood study, new data product

(Thanks Insuresilience CIF)

Map 13: Best percentage of hit performing dataset by Country for excess rainfall risk

Map 14: Difference in percentage of hit between LatAm and CHIRPS datasets for excess

Community Intelligence driving "self" optimizing indexes through crowdcore algorithms?

Thanks, using some gratuitous buzzwords