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Yield loss assessment toolbox

v' Ensemble of statistical and process-based crop models
v’ Integrate specific model strengths and different data types for higher precision in loss assessment
v Accurate yield estimation, even prior to harvest

v’ Reliable detection of yield variation, even under extreme events
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related yield losses

Gornott & Wechsung (2016), Agricultural
and Forest Meteorology 217, 89 — 100.
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Process-based eco-hydrological model
SWIM - Soil and Water Integrated Model
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Water abstraction & irrigation Point sources & fertilizers Crop rotation

Krysanova at al. (2000): PIK Report Nr. 69 SWIM

Felicitas Rohrig
(Soil and Water Integrated Model), User Manual.



Case study 1: Rice in India
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Model performance: spatial coverage of rice yields
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modeling via big data analytics to support crop insurance in India.



Model performance: spatial and temporal coverage
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Around 60% (68%) of the districts
obtained a rRMSE of less than 20% (25%)
after calibration
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Arumugam et al. (forthcoming): Geospatial near-real-time biophysical rice
modeling via big data analytics to support crop insurance in India.
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Model results: Simulated yield loss in 2016 and 2017

Simulated yield loss (%)

Simulated yield loss (%)
(Kharif - 2016)

(Kharif - 2017)
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Case study
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Spatial coverage of maize yields by SWIM

Observed

avg = 1.3t ha'

SWIM

avg = 1.3t ha'
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Gornott, Hattermann, Wechsung, under review
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Explained spatial and temporal yield variability

Modeled yield [in ¥ha]
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Combined model approach to improve model performance

SWIM
(Soil and Water Integrated Model, process based)

b

AMPLIFY

(Agricultural Model for Production Loss Identification to
Insure Failures of Yields; semi-empirical, statistical model)

Combination improves yield assessment accuracy,
models complement each other

I:> Promising calibration and validation results for Tanzania

I:> Extreme yield losses are captured by our crop model
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Gornott, Hattermann, Wechsung: Covering smallhlder farmers’ weather
perils — a crop model based insurance approach for Tanzania (in review)
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Correlation (r) of observed and modeled yields
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Comparison between a precipitation index and
combined model approach

Pearson’s r of observed maize yields and combined model approach (right)
or a precipitation index (left)

Not used by us!
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Share of Weather-Related Yield Losses

ere Share of
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weather-related and 100
90

non-weather related
factors influencing
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In Tanzania, only 27% of
40

the yield variability is
attributable to weather.

The range is 4 —57%.
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perils — a crop model based insurance approach for Tanzania (in review)



Summary

v'Our crop models are able to capture yield loss at time of harvest and at
fine resolution over large geographic area

v'Reliable detection of yield variation, even under extreme events

v'Integration of process-based and statistical models allows accurate yield
loss assessment even in context of data scarcity

v’ Ability to separate weather- and management factors driving yield loss
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Global track record

Outlook
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In these regions, we have already successfully applied single and joint

models for yield estimation and/or forecast.
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