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Outline

• Introduction: Yield loss assessment tool box

• Case study 1: India

• Caste study 2: Tanzania

• Summary and outlook
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AMPLIFY: 
Agricultural Model 
for Production Loss 

Identification to 
Insure Failures of 

Yields 

Process-based 
crop models 
(SWIM, DSSAT, 

APSIM)

Agricultural data

Weather and climate data

Remote sensing data

Yield loss assessment toolbox
 Ensemble of statistical and process-based crop models 

 Integrate specific model strengths and different data types for higher precision in loss assessment

 Accurate yield estimation, even prior to harvest

 Reliable detection of yield variation, even under extreme events
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and Forest Meteorology 217, 89 – 100.

Statistical yield model
AMPLIFY – Agricultural Model for Production Loss Identification to Insure Failures of Yields 
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Process-based eco-hydrological model
SWIM – Soil and Water Integrated Model 

5Felicitas Röhrig Krysanova at al. (2000): PIK Report Nr. 69 SWIM 
(Soil and Water Integrated Model), User Manual.
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Case study 1: Rice in India

Photo: https://flic.kr/p/5reAkz



Model performance: spatial coverage of rice yields

7Felicitas Röhrig Arumugam et al. (forthcoming): Geospatial near-real-time biophysical rice 
modeling via big data analytics to support crop insurance in India. 



Model performance: spatial and temporal coverage
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Around 60% (68%) of the districts 
obtained a rRMSE of less than 20% (25%) 
after calibration

Arumugam et al. (forthcoming): Geospatial near-real-time biophysical rice 
modeling via big data analytics to support crop insurance in India. 
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Model results: Simulated yield loss in 2016 and 2017

Arumugam et al. (forthcoming): Geospatial near-real-time biophysical rice 
modeling via big data analytics to support crop insurance in India. 



Case study 2: Tanzania

Case study 2: Maize in Tanzania

Photo: Neil Palmer, CIAT



Spatial coverage of maize yields by SWIM

Time period 2003-2010
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Observed SWIM

Gornott, Hattermann, Wechsung, under review

r = 0.57NS

avg = 1.3t ha-1 avg = 1.3t ha-1
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Explained spatial and temporal yield variability
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r = 0.05NS

Gornott, Hattermann, Wechsung, under review

PM PM + SM
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Combined model approach to improve model performance
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SWIM 
(Soil and Water Integrated Model, process based)

Combination improves yield assessment accuracy, 
models complement each other

Promising calibration and validation results for Tanzania                

Extreme yield losses are captured by our crop model                     

Gornott, Hattermann, Wechsung: Covering smallhlder farmers’ weather 
perils – a crop model based insurance approach for Tanzania (in review)
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AMPLIFY
(Agricultural Model for Production Loss Identification to 
Insure Failures of Yields; semi-empirical, statistical model)



Correlation (r) of observed and modeled yields
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Comparison between a precipitation index and 
combined model approach 

Pearson’s r of observed maize yields and combined model approach
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(right) 
or a precipitation index (left)

Not used by us!

Gornott, Hattermann, Wechsung: Covering smallhlder farmers’ weather 
perils – a crop model based insurance approach for Tanzania (in review)
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Share of 
Weather

[in
 %

]

Gornott, Hattermann, Wechsung: Covering smallhlder farmers’ weather 
perils – a crop model based insurance approach for Tanzania (in review)

Share of Weather-Related Yield Losses

Ability to separate 
weather-related and 
non-weather related 
factors influencing 
yield loss

In Tanzania, only 27% of 
the yield variability is 
attributable to weather.  

The range is  4 – 57%.
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Summary
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Our crop models are able to capture yield loss at time of harvest and at 
fine resolution over large geographic area

Reliable detection of yield variation, even under extreme events

Integration of process-based and statistical models allows accurate yield 
loss assessment even in context of data scarcity

Ability to separate weather- and management factors driving yield loss
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Outlook: Global track record

In these regions, we have already successfully applied single and joint 
models for yield estimation and/or forecast.
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Thank you!
froehrig@pik-potsdam.de
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