

Leibniz Gemeinschaft

Yield assessment using crop models

Felicitas Röhrig

Potsdam Institute for Climate Impact Research (PIK) froehrig@pik-potsdam.de

IMC Dhaka, 07. November 2019

- Introduction: Yield loss assessment tool box
- Case study 1: India
- Caste study 2: Tanzania
- Summary and outlook

Felicitas Röhrig

Yield loss assessment toolbox

- ✓ Ensemble of statistical and process-based crop models
- ✓ Integrate specific model strengths and different data types for higher precision in loss assessment
- ✓ Accurate yield estimation, even prior to harvest
- ✓ Reliable detection of yield variation, even under extreme events

Statistical yield model

AMPLIFY – Agricultural Model for Production Loss Identification to Insure Failures of Yields

Felicitas Röhrig

Gornott & Wechsung (2016), Agricultural and Forest Meteorology 217, 89 – 100.

Process-based eco-hydrological model SWIM – Soil and Water Integrated Model

Felicitas Röhrig

Krysanova at al. (2000): PIK Report Nr. 69 SWIM (Soil and Water Integrated Model), User Manual.

Case study 1: Rice in India

- Denistert M

Model performance: spatial coverage of rice yields

Felicitas Röhrig

Arumugam et al. (forthcoming): Geospatial near-real-time biophysical rice modeling via big data analytics to support crop insurance in India.

Model performance: spatial and temporal coverage

Around 60% (68%) of the districts obtained a rRMSE of less than 20% (25%) after calibration

Felicitas Röhrig

Arumugam et al. (forthcoming): Geospatial near-real-time biophysical rice modeling via big data analytics to support crop insurance in India.

Model results: Simulated yield loss in 2016 and 2017

Felicitas Röhrig

Arumugam et al. (forthcoming): Geospatial near-real-time biophysical rice modeling via big data analytics to support crop insurance in India.

Case study 2: Maize in Tanzania

Spatial coverage of maize yields by SWIM

Time period 2003-2010

Felicitas Röhrig

Explained spatial and temporal yield variability

Combined model approach to improve model performance

SWIM

(Soil and Water Integrated Model, process based)

AMPLIFY

(Agricultural Model for Production Loss Identification to Insure Failures of Yields; semi-empirical, statistical model)

- Combination improves yield assessment accuracy, models complement each other
- Promising calibration and validation results for Tanzania
- Extreme yield losses are captured by our crop model

Correlation (r) of observed and modeled yields

Comparison between a precipitation index and combined model approach

Pearson's r of observed maize yields and combined model approach (right) or a precipitation index (left)

Felicitas Röhrig

Gornott, Hattermann, Wechsung: Covering smallhlder farmers' weather perils – a crop model based insurance approach for Tanzania (in review)

Share of Weather-Related Yield Losses

Ability to separate weather-related and non-weather related factors influencing yield loss

In Tanzania, only 27% of the yield variability is attributable to weather.

The range is 4 - 57%.

Felicitas Röhrig

Gornott, Hattermann, Wechsung: Covering smallhlder farmers' weather perils – a crop model based insurance approach for Tanzania (in review)

Summary

✓ Our crop models are able to capture yield loss at time of harvest and at fine resolution over large geographic area

✓ Reliable detection of yield variation, even under extreme events

✓Integration of process-based and statistical models allows accurate yield loss assessment even in context of data scarcity

✓Ability to separate weather- and management factors driving yield loss

Outlook: Global track record

In these regions, we have already successfully applied single and joint models for yield estimation and/or forecast.

DEDROOUS

froehrig@pik-potsdam.de