Leveraging Optimal Portfolio of Drought Tolerant Maize Varieties for Weather Index Insurance and Food Security

Sebastian Awondo 1 Genti Kostandini 2

1University of Alabama, U.S.A

2University of Georgia, U.S.A

2023 ICII, Accra, Ghana

https://doi.org/10.1057/s10713-021-00065-4
Research questions

- Does an optimally selected combination of maize varieties offer better protection against drought risk than common practices?

- What are the implications on scaling weather index insurance?
Data

- **On farm trial data by CYMMYT & Partners in 2011**
 - 20 varieties; DT1, DT2, …., DT19, Local variety (LV)
 - 49 locations
 - 20 Zimbabwe
 - 8 Malawi
 - 4 in Zambia, Uganda, Ethiopia
 - 3 Mozambique
 - 5 Kenya
 - 1 Tanzania

- **5 Mega environment**
 - Dry lowland
 - Dry mid-altitude
 - Wet lower mid-altitude
 - Wet lowland
 - Wet upper mid altitude

- **High resolution spatial daily rainfall data (1983-2013) from NOAA**
 - Cumulative rainfall over growing season
Simulations & Downside Risk Portfolio Optimization

- Simulate 500 years of correlated space-time growing seasonal rainfall
- Predict yields & farm returns from 500 growing seasons
- Select an optimal combination of varieties in each environment that diversify drought risk and maximizes farm returns
- Compare performance of optimal portfolio to 3 baseline practices:
 - Portfolio of equal weights (**Naive**)
 - Relatively high yielding variety (**DT12**)
 - Popular local maize variety (**LV**)

Awondo/Genti (UA/UGA) Optimal Portfolio of DTMVs 4/8
Optimal downside risk portfolios by environment

Dry lowland

Dry mid-altitude

Wet lower mid-altitude

Low wetland

Wet upper mid-altitude
Insurance performance analysis (Gross returns)

<table>
<thead>
<tr>
<th>Region</th>
<th>Optima</th>
<th>Naive</th>
<th>DT12</th>
<th>LV</th>
<th>Naive</th>
<th>DT12</th>
<th>LV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry lowland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premium rate</td>
<td>0.279</td>
<td>0.501</td>
<td>0.730</td>
<td>0.509</td>
<td>-44.35</td>
<td>-61.18</td>
<td>-45.27</td>
</tr>
<tr>
<td>Dry mid-altitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premium rate</td>
<td>0.687</td>
<td>0.733</td>
<td>1.025</td>
<td>0.852</td>
<td>-6.30</td>
<td>-33.03</td>
<td>-19.40</td>
</tr>
<tr>
<td>Wet lower mid-altitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premium rate</td>
<td>0.193</td>
<td>0.344</td>
<td>0.431</td>
<td>0.158</td>
<td>-43.76</td>
<td>-55.12</td>
<td>22.20</td>
</tr>
<tr>
<td>Low wetland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premium rate</td>
<td>0.347</td>
<td>0.452</td>
<td>0.884</td>
<td>0.921</td>
<td>-23.36</td>
<td>-60.81</td>
<td>-62.36</td>
</tr>
<tr>
<td>Wet upper mid-altitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premium rate</td>
<td>0.422</td>
<td>0.708</td>
<td>1.100</td>
<td>1.100</td>
<td>-40.36</td>
<td>-61.60</td>
<td>-61.60</td>
</tr>
</tbody>
</table>
Key results & policy implications

- Optimally diversified portfolios - promising holistic risk management tool
 - Increases expected farm returns by 12 to 127 times
 - Reduces actuarially fair premium rates up to 31% - 55%
 - Potential to spur demand and supply of risk mitigation and transfer products

- Leverage diversified crop/varieties portfolios and Insurance across zones

- Combine seasonal weather forecast & optimum portfolio for better pricing

- Need for regulations to promote pilots/supply by insurers and reinsurance

- Complementary for contract farming and commodity trading
Thank you!

Questions, Comments?

Sebastain Awondo, Ph.D.

Center for Insurance Information & Research

The University of Alabama

Email: s.nawondo@ua.edu