Leveraging Optimal Portfolio of Drought Tolerant Maize Varieties for Weather Index Insurance and Food Security

Sebastain Awondo¹ Genti Kostandini²

¹University of Alabama, U.S.A

²University of Georgia, U.S.A

2023 ICII, Accra, Ghana

The Geneva Risk and Insurance Review (2022) 47:45–65 https://doi.org/10.1057/s10713-021-00065-4 • Does an optimally selected combination of maize varieties offer better protection against drought risk than common practices?

• What are the implications on scaling weather index insurance?

Data

• On farm trial data by CYMMYT & Partners in 2011

- 20 varieties; DT1, DT2,, DT19, Local variety (LV)
- 49 locations
 - 20 Zimbabwe
 - 8 Malawi
 - 4 in Zambia, Uganda, Ethiopia
 - 3 Mozambique
 - 5 Kenya
 - 1 Tanzania
- 5 Mega environment
 - Dry lowland
 - Dry mid-altitude
 - Wet lower mid-altitude
 - Wet lowland
 - Wet upper mid altitude

• High resolution spatial daily rainfall data (1983-2013) from NOAA

• Cumulative rainfall over growing season

▶ ∢ ∃ ▶

Simulations & Downside Risk Portfolio Optimization

- Simulate 500 years of correlated space-time growing seasonal rainfall
- Predict yields & farm returns from 500 growing seasons
- Select an optimal combination of varieties in each environment that diversify drought risk and maximizes farm returns
- Compare performance of optimal portfolio to 3 baseline practices:
 - Portfolio of equal weights (Naive)
 - Relatively high yielding variety (DT12)
 - Popular local maize variety (LV)

Optimal downside risk portfolios by environment

æ

		Baseline			% C	% Change in Optimal		
	Optima	Naive	DT12	LV	Naive	DT12	LV	
Dry lowland								
Premium rate	0.279	0.501	0.730	0.509	-44.35	-61.18	-45.27	
Dry mid-altitude								
Premium rate	0.687	0.733	1.025	0.852	-6.30	-33.03	-19.40	
Wet lower mid-altitude								
Premium rate	0.193	0.344	0.431	0.158	-43.76	-55.12	22.20	
Low wetland								
Premium rate	0.347	0.452	0.884	0.921	-23.36	-60.81	-62.36	
Wet upper mid-altitude								
Premium rate	0.422	0.708	1.100	1.100	-40.36	-61.60	-61.60	

э

∃ ► < ∃ ►

- (日)

- Optimally diversified portfolios promising holistic risk management tool
 - Increases expected farm returns by 12 to 127 times
 - $\bullet\,$ Reduces actuarially fair premium rates up to 31% 55%
 - Potential to spur demand and supply of risk mitigation and transfer products
- Leverage diversified crop/varieties portfolios and Insurance across zones
- Combine seasonal weather forecast & optimum portfolio for better pricing
- Need for regulations to promote pilots/supply by insurers and reinsurance
- Complementary for contract farming and commodity trading

・ロト ・ 四ト ・ ヨト ・ ヨト …

Thank you!

Questions, Comments?

Sebastain Awondo, Ph.D.

Center for Insurance Information & Research

The University of Alabama

Email: snawondo@ua.edu

.∋...>